
Power Platform
Model-Driven Applications for Application Users

Who is this training for? 3

What are we going to look at 5

Basic Navigation in the Model-Driven Applications 6

Model-Driven Applications and Shared Data 15

Working with views 17

Personalization Settings 22

Working with the data 26

Forms 34

History tracking and audit capabilities 50

Coming soon 52

Live Course Delivery 52

1.Who is this training for?
It is a valid question, since this training is part of the bigger “Power Platform training course”
which is meant for the application makers / developers. However, the purpose of this
particular module is to provide training in the core capabilities of Model-Driven applications
to both end users and application makers, especially if the latter are just starting to work with
Power Platform. To clarify this a little more, and if you are not too familiar with the
model-driven applications yet, I’ll resort to an analogy.

Imagine that you’ve been given a jet plane, and you were asked to fly from point A to point B
(Those of you who have happened to have a jet pilot licence may have to also imagine you
had never had it).

You know that jet plane can get the job done, and you may even have some idea of how it’s
supposed to be done, but, with all likelihood, if you try without prior guidance, you might end
up ruining the jet plane, the surroundings, and, potentially, you might be risking your life.

It is not too far from what’s happening on some Power Platform / Dynamics projects. You get
a business analyst or a UI designer who has limited understanding of the platform
capabilities, and they start coming up with the requirements and/or requests which are just
not possible to implement, so the project gets ruined.

Or there are users who do not understand how to work with the model-driven applications
functionality which is there out of the box, and they start complaining that certain functionality
is not available. The project starts receiving bad feedback, and, eventually, gets ruined.

Or, possibly, a developer creating a model-driven application does not realize what a
business process flow is, and, out of a sudden, your project ends up being way over budget
since there is a custom implementation of the process stages.Or, possibly, a user reporting a
bug might not be providing enough details for some reason, so a developer looking at the
same feature in the dev environment has to be able to guess what is it the user was doing.

Unlike with the Canvas Applications, where the applications are developed from the ground
up, in the model-driven applications world we often only need to define which pieces of the
data model should be available in that application.

But, once it is done, how do we know what other functionality will be provided by the platform
so we would not have to implement it, and so that the users could rely on it?

This is where this guide comes in, and, hopefully, it’ll be useful to both the end users and the
developers.

2.What are we going to look at

Here is what we are going to look at:

● Basic navigation in the Model-Driven Applications
● Model-Driven Applications and Shared Data
● Working with views
● Personalization options
● Working with records
● Forms navigation (sections, tabs, related, etc)
● Command Bars
● Charts
● Dashboards
● Search and reporting options
● Sharepoint integration, Email integration, Word Templates

Keep in mind that, in this module only, we are going to look at those features more from the
user perspective than from the configuration and customization standpoint. The idea is not to
learn how to set it up, but, instead, to see how it works and to get basic understanding of the
out-of-the-box features (even if some of them may need to be configured by the system
administrator before application users can start using them)

3.Basic Navigation in the Model-Driven
Applications

All Model-Driven applications offer the same navigation framework:

There is application selector (1), which is there for any model-driven application

There is search box (2), which is there all the time as well

There is quick access menu (3), which does not change from app to app

There is navigation area (4), which is app-specific

There is command bar (5) which is context-based

And there is content area (6)

While working in the application, you can click application name (“Sales Hub” on the
screenshot above) and pick another application from the list of apps which you have been
given access to:

If you are a system administrator in the environment, you will have access to all the apps
there. Otherwise, depending on the security roles assigned to them, different users will see
different applications.

The search box offers some surprisingly powerful functionality - keep in mind it has to be
configured properly, but, once it’s been configured, you can use it to search across multiple
tables at the same time::

There are a few useful options in the quick access menu. For instance, you can use it to
start creating records quickly:

Not all the tables will show up there - those tables have to be configured so that “quick
create” is enabled for them, and, also, they have to be added to the model-driven
application.

You can also use that menu to quickly access “Advanced Find”:

Advanced Find is, essentially, a way to build custom queries. You can use it to search for the
records from a specific table based on the criteria you’ll define in the advanced find window.
We are not going to discuss it in detail right now, but we’ll get there a bit later in this module.

Finally, there is “Settings” button:

We will look at the Personalization Settings later in the module, but, in short, this is where
you can update personal settings such as the number of records you want to be displayed
per page, for instance.

Advanced Settings are more applicable to what System Administrators will be doing in the
system. And we don’t need to be concerned with the other options yet.

Then there is application navigation area:

Every model-driven application will expose its own
navigation items on the left side, so that there will be a few
areas (4), each organized into groups (2) and subareas (3).

It’s the subareas which will represent actual navigation items
in the application. More often than not, each subarea will
correspond to a table, but it can also be a dashboard, an
HTML page, or, possibly, an external link.

Only one area will be visible at any time, but you will be able
to select other areas by clicking on the area selector next to
the area name (up and down arrows next to the “#4” on the
screenshot). And groups (2) are there just to help with the
grouping of different subareas.

There is, also, common area (1) which is the same for all
model-driven applications. This is where you can see pinned
items, recent items, and, also, quickly jump to the “home”
page.

You will notice command bars in different places in the model-driven applications. Those
are areas on the screen filled with the command buttons such as “New”, “Delete”, “Refresh”,
etc.

For example, when looking at the list of records, you will see a command bar which might
look similar to the one below:

Keep in mind that command bars are contextual. In the example above, once a record has
been selected, some additional button will show which only make sense in the context of the
selected record:

You will also see record-specific command bar once you have navigated to that record:

Notice how in the above example there is no “Show Chart” button, since that button only
makes sense in the context of the list of records.

Model-drive applications will also display a command bar above every subgrid. In the
example below, you can see two command bars. The first one is identical to the one you’ve
seen above, but there is yet another one which is working in the context of the contacts
associated to the account:

Keep in mind that, quite often, there will be additional command hidden under the “three
dots” for each command bar:

In short, command bars are filled with various action buttons, which, in turn, are displayed in
the context of the data currently displayed on the screen.

Developers have no control of where and how command bars are going to show up, but they
do have some control of the buttons which are showing up there.

As for the content area in the middle of the screen, that is where model-driven applications
will be displaying dashboards, lists of records, individual records, and, possibly, other
content as you keep navigation through the application.

With all that said, let’s clarify a few things:

● In every environment, there can be multiple model-driven applications. Depending on
the permissions assigned to them, different users will see different applications

● Each application will define its own navigation structure
● From the security standpoint, access to the certain areas of the application may be

further restricted by not assigned required security roles to the users. In other words,
the same application may look somewhat different to different users

4.Model-Driven Applications and Shared Data

When thinking about model-driven applications, keep in mind that, quite often, the data will
be shared between those applications.

What the screenshot above is meant to illustrate is that:

● There could be multiple environments in the same tenant
● Each environment can have multiple applications

● Each of those applications in the specific environment may expose pieces of the
same data, and, when that data is updated in one application, those changes will
surface in the other

● Just to clarify, though, model-driven applications cannot cross the boundaries of their
respective environments when accessing data (at least not unless developers put
significant effort into making it work between environments)

In other words, every application in a particular environment may look unique, but all of them
may still be using the same data.

So, then, what if we need to isolate data between different applications? That’s doable, of
course, but that’s a question of setting up a proper security model, or, possibly creating
custom tables so that each application exposes its own table instead of using the same
shared ones. That's something applications makers / developers would have to take care
about when creating the application.

5.Working with views
Views, Lists, or Grids - in the model-driven applications these are often referring to the same
thing, though each of those words has a slightly different connotation.

A view in model driven applications is a combination of a query, columns, and sorting order.
If you wanted to see a list of records from a certain table (or from that table and from related
tables which are related to the main one through what is called 1:N relationships), you could
use a pre-configured view, or you could even create a new one using Advanced Find.

For example, on the screenshot below you can see how “My Active Accounts” view is,
currently, selected:

There is a dropdown icon next to it which provides access to a selection of other account
views:

Some views are configured by the makers / developers, those are system views. Each
application in the environment may choose to expose all or only some of those system
views.

Users, on the other hand, have the ability to create their own views AND to share those
views with other users or teams in the same environment.

To reiterate, here is what we can say about the views (among other things):

● They are named pre-configured queries
● Every view defines required query conditions, default sorting, and, also, list of

columns that will be displayed when the view is selected
● There can be system views and personal (user) views
● Every application controls which system views it wants to expose
● Users can share their personal views with other users (unless that permission has

been taken away)

Views are selectable in different places in the model-driven application, and, once a view is
selected, a list of records will be rendered. Usually, that list will be rendered are a grid (or,
possible, a subgrid, if that grid is displayed on another record’s form). For instance, here is
an example of such grid:

Grids, unlike views, are not, really, configurable. They are meant to display the list of
records, and they will always do it in the same manner, yet they will offer some capabilities
such as:

- Ability to sort by clicking on the column title (if you hold “shift” when doing this, you
can add columns to the sorting instead of dropping all previously selected one from
it)

- On the same screenshot above, notice “Filter by” option - there is also the ability to
add per-column filters

- Grids will display a certain # of records per page (there is a related configuration
settings in the personalization options), and, when there are more pages available,
users will be able to navigate to those additional pages:

- Grids also allow adding columns to the view temporarily (since, for example, system
views cannot and should not be updated that easily) using “Column Options” button
(1) below

- Similarly, it’s possible to temporary apply more complex filters filters by using
“Advanced Filtering panel” (2)

- And, also, there is a search box (3)

That search box (3) above, also called “quick find”, supports wild-card searching as well, so
we can use “*” character to specify “any” text. Here is an example:

In order for quick find to look for the data in a specific column, that column needs to be
added as a “find column” to the special “Quick Find” view. This view is shared between all
applications in the environment, and it has to be configured by the application
makers/system administrators. A regular application user does not have control of hose that
view is set up.

With the above, it’s quite possible that, if a column has not been added to the “Quick find”
view, a certain value might show up in that column when looking at the unfiltered data, but
the grid will produce no search output when searching on that value.

Last but not least, grids will display links for every lookup record, and they will display a link
for the “primary” column of the table:

Users can click those links to open such records.
It’s also possible to select one or more records (in the latter case, they all have to be on the
same page), and, then, apply available contextual command bar actions to the selected
records.

For example, on the screenshot below three different account records have been checked
off, and there are “Edit”, “Activate”, “Deactivate”, “Delete” buttons available in the command
bar for this selection:

Now, normally we would say “accounts list”, “contacts list”, etc when talking about a list of
records. Personally, I find it a good alternative to a somewhat more platform specific “view” /
“grid” terminology, especially when that terminology has not been fully adopted by a group,
yet.

6.Personalization Settings

There are a few personal settings users can adjust in the environments. Those settings are
not specific to the application - they are specific to the environments (and remember there
could be multiple applications in the same environment).

It is worth looking at all those settings just to be aware of them; however, the first two on the
list below, are, probably, the two most widely used:

● Records per page setting affects how many records will be displayed per grid page
● Time zone setting affects the time zone which will be used to convert all time-zone

enabled date/time values
● Occasionally, some users might want to change default date, currency, and other

formats
● Model-driven applications supports different languages (some translations are

available out of the box, others may have to be added as part of setting it all up), so
users may decide which of the supported languages they would like to use

● Also, in those environment where email integration has been enabled, users have
some control over email synchronization options

● And there are a few other options which can be configured through the
personalization settings as well

7.Working with the data
Typically, here is how how you will be working with the model-driven applications:

● Open application in the web browser
● Navigate to the desired area using navigation links on the left
● Review list of records displayed in the content area, possibly use various search

options to find the one you need
● Use command bar to apply some actions to the existing records, or, possibly, to start

creating a new one instead

So far, we have looked at the first 3 steps. In one of the following chapters, we will look at
the search and reporting capabilities of model-driven applications a bit more, but, right now,
it’s the last step above which we need to work through.

Since, after all, the purpose of model-driven applications is to work with the underlying data,
and there is some common functionality offered out of the box. That’s exactly what we need
to look at in this chapter.

That said, this common functionality can be extended, customized, and it can also be
modified by Microsoft every now and then. Still, let’s have a look at some of the things to be
aware of.

A record in the model-driven application is, essentially, a row in the table. What is a table? I
guess you’d be only asking this if you are coming looking at all of this more from the “user”
perspective, so “developers” can skip the explanation below.

Anyways, imagine an excel spreadsheet. In the first tab there, you might be maintaining a list
of accounts. In the second tab, you might be maintaining a list of contacts. And so on. The
simplest analogy would be to say that the whole spreadsheet is a “database”, and each tab
is a “table”. In each of those tables, every row/record would have the same columns, but, of
course, rows that belong to different tables would have different columns.

Model-Driven applications can only work with one specific database, which is called
Microsoft Dataverse. We talked about tables, records, views… a lot of those and other
concepts are attributes of Microsoft Dataverse - in reality, model-driven applications are
nothing but containers which combine different components from Microsoft Dataverse:

On the screenshot above, you can see how three different applications are using the same
tables/forms/views in different combinations. This is not everything that can be included into
an application, but the purpose of the diagram above is to illustrate the fact that model-driven
applications are simply offering a way to group Dataverse functionality into logical pieces,
yet, on top of that, they are offering left-hand navigation which we looked at before.

So, then, when talking about data records in the model-driven applications, keep in mind that
we are actually talking about the data stored in Microsoft Dataverse, and, across all the
applications in the same environment, different users can perform just the same operations
against the same data (as long as that data is exposed in the specific application, and as
long as respective users have required security roles)

Here are some of the most typical things you can do with the data records:

● Perform a search (we looked at it before, we’ll look at it again later)
● Activate/Deactivate/Change status
● Assign to a user/team or share with a specific user/team (for some tables, there are

no such options)
● Delete a record
● Create a new record

● Update a record
● Associate a record to a record from the same / other table

User’s ability to perform those operations is controlled through the security roles assigned to
the user. Apparently, system administrators will be able to do all of that. However, it’s not
unusual that “Delete” operation will be disabled through the security roles, and, so, regular
users might not be able to delete any records.

Why would application makers decide to limit users’ ability to delete data? Well, there are
lots of considerations there, but data integrity and history tracking is, likely, the most
important ones. If everybody could delete data freely, intentionally or not, it would make it
almost impossible to see the history in the context of some business processes. Besides,
that data may be shared - for example, imagine a contact which is a “customer” on two
different opportunity records is deleted by mistake. There would be two opportunity records
in the system, and none of them would have contact details to reach out to the “client”. You
may think this won’t happen, but, in reality, it is almost bound to happen. Sooner or later,
somebody will delete a record which is not supposed to be deleted, and that will mean
trouble.

This is why, when looking at the command bars, you might not be able to see “delete”
button:

But, if you do see it, you might try using it. In case with the account records, for example, the
system will give you an enhanced warning message:

But, if you try it with most of the other record, you’ll see a much more simple confirmation
dialog:

Having talked about the “Delete” operation, let’s talk about what is called “soft delete”
sometimes.

Instead of deleting a record, it is, often, better to just deactivate it. Inactive records become
readonly in the model-driven applications (behind the scene, they can still be updated), yet
they would normally disappear from the views, since most of the views would have a
condition to filter out “inactive” records.

Essentially, inactive records will almost disappear, but they will still be there in case they are
needed and/or for historical purposes.

If a record that has been deactivated previously needs to be brought “back to live”, it can be
activated. All of this is, usually, done using “Activate” / “Deactivate” buttons:

Sometimes, those buttons may be called differently (for example, lead records are not
“deactivated”, they are “disqualified”).

Sometimes, those buttons might be hidden by default (for instance, there is no “Activate”
button for tasks - it’s hidden out of the box, but it can be re-added by the application makers /
developers).

In fact, “Activate” and “Deactivate” buttons are just two examples of how statuses and status
reasons work in Microsoft Dataverse (and, therefore, in the model-driven applications).

Every now and then, you will click “Deactivate”, and you will see a popup dialog suggesting
to choose from one of the “reasons”. For example, when cancelling a case (“Cancel” button,
which is an equivalent to “Deactivate”), you see this kind of popup window:

Every record in Microsoft Dataverse will have “Status” and “Status Reason” columns. They
are related in the sense that for every “Status” there can be one or more “Status Reasons”.
Those are defined per table, they can be different for each table, and model-driven
applications are offering functionality to work with those out of the box.

Aside from “Activate”, “Deactivate”, and “Delete”, there are, usually, other buttons in the
command bars.

There are three more I wanted to touch quickly:

Actually, there are two on the screenshot above. “Refresh” does exactly what it is meant to
do - it is refreshing the content area, be it a grid, or be it an individual form (which we will
look at in the next chapter).

“New” is there so users could start creating a new record.

However, since command bards display buttons in the context of what’s happening in the
“content” area, “Edit” will be displayed there once a record has been selected in the grid, as
you can see on the screenshot below:

In the next chapter, we’ll talk about the “forms”, which is where you can update individual
columns for a given record if you opened it in the application using “Edit” button, or where
you can provide values for the new record on essentially the same form if you opened it
using “New” button instead.

8.Forms

Forms in the model-driven applications are simply screens where users can look at the
details of the individual records and possibly update some of those details. Forms are also
used to create new records.

For example, here is an example of a contact form - notice there is, also, a command bar on
that screen:

Application makers / developers can create and update table forms so users can, then,
utilize those form when working with the application. It is worth mentioning that forms can be
re-used across multiple applications in the same environment, but, at the same time, some
applications may choose to use specific forms only (the same is true for the views, by the
way).

For example, here is a different form which is displaying the same contact record:

If a user working with the application has access to multiple forms through the security roles,
and if more than one of those forms has been added to the application by the developers,
there will be a form selector dropdown (highlighted above) to choose from one of the
available forms.

This might, actually, lead to the occasional confusion, since Model-Driven applications do
remember the latest form selection per user (but not per record), so the next time a record
from the same table is opened in a form, model-driven application will use the same form
that the user selected before.

Every table may have hundreds of columns, lots of relationships, etc. Not all of those are
needed when creating a new contact through the call centre. On the other hand, when
creating or updating a portal contact, portal administrators may need to see portal
authentication methods for that contact.

And those are just two examples, but, in general, application makers will use multiple forms
to optimize data entry for different scenarios.

Let’s look at some of the common elements you will see on the forms:

There are some special types of forms, but, most of the times, here is what you’ll see:

● There will be command bar (1)
● There will be record name (2)
● There will be form selector (3) if more than one form is available
● There might be header (4) with a few columns displayed there
● There will be “tab” navigation (5)
● There will be 1 or more sections (6), (7) with columns and subgrids

Command bar should look familiar now; although, there will be some buttons which are not
available in the “grid” command bards.

Specifically, there will be “Save” and “Save and Close” buttons among the other ones. Those
two will show up only when the record being displayed in the form is editable. “Save” will
save the changes. “Save and Close” will also close the form after that, and the application
will navigate back to the previous screen (it could be a different form, or, possibly, a view,
etc). “Save and Close” is very handy when a user does not need to do anything else with the

current record, and, instead, just needs to save it and go back to where they came from in
the application.

Record name (2) is there only for “display” purposes - it’s not editable. Depending on the
table, it could correspond to different columns (Subject, Title, Name, etc), and, in order to
give application users ability to update record names, that column would have to be added to
one of the sections on the form.

We have already looked at the form selector (3) - again, that’s there to give access to
multiple forms. Some applications will expose only a single form, in which case there will be
no form selector while in that application. Also, some users will have access to only one
form, which will lead to the same result.

Header, Tabs, and Sections are there to help organize columns on the screen.

There is only one header per form, and it’s displayed at the top right corner. Headers may
display a few columns, so, in that sense, they are similar to form sections. However, unlike
with the sections, in order to start entering column values into the input controls in the
header, header will need to be expanded:

As for the tabs, they group different sections together, and only one tab is visible on the
screen at any time. There is, also, tab navigation at the top of the form. So, for example,

application makers could choose not to display hundreds of columns on the same
tab/section, since it might be a long screen then, and, instead, organize them into multiple
sections, then organize sections into tabs, thus making the whole form screen easier to
navigate through.

Note: form design and configuration is for the application makers to do. Regular users don’t
have access to the form designer functionality.

There could be multiple tabs, and there are no prescribed names for them, but there is only
special item in the tabs navigation area called “Related”. That’s not, really, a tab, but it
behaves a bit as a tab.

What it does is once clicked is: it shows all related tables which are linked to the current
table through a relationship:

There has to be a relationship in the Microsoft Dataverse, and it has to be a 1:N or an N:N
relationship.

Note: what is a relationship? It is a way of specifying that two tables are related to each other
in some way. 1:N means Parent-Child relationship, where, for example, you may have an
organization record in the system, and you may have different contact records all related to
the same organization since it’s their “primary account”. Although, it could also be N:N if the
relationship is not so much about one table being a “parent” and another being a “child” -
what if the same contact can be related to different organizations, since that contact
represent an individual who is providing consulting services to all those organizations? In
which case the same organization may be related to different contacts through the same
relationship, of course. This is called N:N.

There is, also, N:1, which is a reversal of the 1:N (so, where there is 1:N, there is, also, N:1)

However, on the form screen only 1:N and N:N relationships will be showing up in the
“Related” dropdown.

Once a specific related table is selected from that dropdown, a new tab gets added to the
form, and related records from the selected table are displayed in that tab:

Keep in mind that those “dynamically added” tabs do not get re-added to the form
automatically after the form is closed, and, then, opened again.

With that, let’s just have a few more example of the tabs here - the screenshots below are
for the same record and for the same form, but selected tab is different on each screenshot:

If you take another look at the screenshots above, you’ll notice that various columns on the
form are grouped into what is called “sections”. Application makers can only put columns
inside form sections in the model-driven apps (with the exception of “headers”, but those can
be thought of as being just another somewhat special section).

Working with form columns from the user perspective is straightforward - it’s all about filling
in required data and saving those changes.

Some columns will expect the data to be using specific format, and, when it’s not the case,
there will be a validation error displayed on the form:

Also, a few special column types support quick actions (for example: sending an email,
creating a phone call, opening a web page).

There are “choice” columns:

Those choices are configurable, but any configuration changes to the list of possible values
would require certain permissions (System Customizer / System Administrator).

As an alternative to the “choice” columns, there will often be a “lookup” column:

Unlike with the choices, lookup values can be maintained by the regular users. In reality,
lookup values are just records from a related table (it could also be a combination of tables),
so users’ access to those tables is controlled through the security roles.

From the user interface and usability perspective, choices and lookups are not, always,
interchangeable.

Lookup input controls on the form are, actually, relatively complex compared to the choices.

First of all, application makers have control over which view will be used to display possible
“lookup values” (as in, “active contacts”, “all contacts”, etc)

Lookup control support wildcard search functionality:

They can show you all records or “recent” records (those you have recently selected).

And, also, there is “Advanced lookup” link:

Advanced lookup brings up a more advanced version of the search screen where users can
pick a view and see all columns from that view:

No matter what the column represents (date, text, lookup, etc), it can be marked as
“readonly” on the form:

Keep in mind that the same column can be read-only in some cases, and it can be editable
in others. It can even be read-only on one form and editable on another.

Also, some columns may have a red asterisk next to the label - those are required columns,
and, so, they cannot be left empty when creating / updating a record:

Again, the same column can be required on one form, and it can be optional on another.

Note: there are customizations application makers can apply to the forms to lock and unlock
certain columns and/or to make them read-only using conditional logic.

All of the above works more or less the same way while creating a new record or while
updating an existing record.

It is a little different for the subgrids, however. Subgrids are just grids displayed on the forms.
For example, on the screenshot below there is a “Quiz” records and there are associated
“Quiz Questions” which are displayed in a subgrid:

If it were a “new quiz” record, the subgrid would look like this:

The reason for that is that for new records there is nothing to associate related records to,
yet, nothing can be displayed in the subgrid. Even more, the subgrids itself cannot be
displayed either.

You have probably noticed by this time that the same form can arrange screen elements a
little differently depending on the browser window size. This is intentional, since
model-driven applications implement responsive design, which means they make an effort to
look well on different screens.

For example, here is how account form may look like on a bigger screen:

And, when the windows size is smaller, it re-flows in the following way:

Every now and then, there would be a form that does not look well on your screen. You
might try using browser’s zoom capability to make it reflow into a better version of itself:

Of course, there is a limit to how much you can rely on the “zoom” feature, since, at some
point, everything might become just too small to continue working comfortably.

9.History tracking and audit capabilities
The question of tracking and audit may come from just about anyone working with
model-driven applications, and it can be for different reasons.

Therefore, it may be helpful to understand the basics of tacking and audit, and here is how it
goes:

● There are “Created By”, “Created On”, “Modified By”, “Modified On” columns in each
table which provide basic history tracking functionality. Created By and Created On
will be set once a record is created. Modified By and Modified On will be updated
every time a record is updated (important: these two columns do not provide
historical log - they are meant to maintain “modified on/by” details for the most recent
update of the record)

● There are, also, audit logs. Auditing has to be enabled in the environment by the
System Administrators. Also, it has to be enabled for the specific table, and for the
specific columns in that table

Users with appropriate security roles will be able to see audit history in the environments.
For example, when looking at the record form, “Audit History” for that record will be available
as one of the items under “Related” dropdown:

Here is an example of audit history:

It’s important to keep in mind that Audit History is not meant for historical reporting - it is
meant for troubleshooting and/or for figuring out what and when went wrong with the data.

10. Coming soon

● Ownership and assign operation
● Charts
● Dashboards
● Advanced Find
● Reporting
● Export to excel
● Sharepoint & Email integration (from the app user perspective)
● Word templates (from the app user perspective)

11. Live Course Delivery

Do you like it so far? That’s great! However, having reading or video material around is
awesome, but nothing will ever replace a live training targeted to a specific team/auditory.

If you are looking for the Power Platform training to be delivered to your team, please reach
out to info@itaintboring.com, and we will see what and when can be done.

mailto:info@itaintboring.com

